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Abstract : This paper provides an explicit construction of the left adjoint to the forgetful functor
from the category of quantales to the category of idempotent semirings in two ways. The first way
shows that an ideal completion gives the left adjoint to the forgetful functor from the category of
complete join semilattices to the category of join semilattices. Generalizing join semilattices to join
semilattices over T-algebras, the left adjoint to the forgetful functor from the category of quantales to
the category of idempotent semirings is given as an example. The second way is to directly prove
that the ideal completion of idempotent semirings gives the left adjoint.
[Keywords] idempotent semiring, quantale, ideal completion, distributive law

1 Introduction

This paper provides an explicit construction of the left adjoint to the forgetful functor from the category of com-
plete join semilattices to the category of join semilattices. Similarly, one can construct the left adjoint to the forget-
ful functor from the category of quantales to the category of idempotent semirings. A quantale is a complete join
semilattice together with a monoid structure whose associative multiplication distributes over arbitrary joins. An
idempotent semiring is a join semilattice together with a monoid structure whose associative multiplication dis-
tributes over finite joins. Both of these left adjoints are defined by an ideal completion. In order to show why both
of these left adjoints are defined by the ideal completion, we generalize quantales and idempotent semirings to
complete join semilattices over T-algebras and join semilattices over 7T-algebras, respectively. By generalization,
the left adjoint to the forgetful functor from the category of quantales to the category of idempotent semirings is
given as an example. We also give a direct proof for the case of the category of quantales and the category of
idempotent semirings.

This paper is organized as follows: Section 2 defines monads for join semilattices. Section 3 shows that a left ad-
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joint between categories of algebras is defined by absolute coequalizer construction. Section 4 shows that the ideal
completion gives the absolute coequalizer for join semilattices. Section 5 generalizes results in Section 3 for
monads combined by distributive laws. Section 6 directly proves that the ideal completion gives the left adjoint to
the forgetful functor from the category of quantales to the category of idempotent semirings without notions of

monads and distributive laws. Section 7 summarizes this work and discusses future work.

2 Monads for Join Semilattices
Definition 2.1. A join semilattice is a tuple (S, <,VV) with a partially ordered set (S, <) and the join or the least up-
per bound \ 4 for a finite subset 4 of S.

A join semilattice S must have the least element 0 since the empty set 0 is a finite subset of S and V 0=0.

SLat denotes the category whose objects are join semilattices and whose arrows are homomorphisms between
them. SLat is equivalent to the Eilenberg-Moore category §,-Alg of the finite powerset monad §,, whose endo-
functor sends a set X to the set of finite subsets ,(X)={4 CX | |4|<w}, whose unit sends an element x in X to {x} in
#,(X), and whose multiplication sends a subset family « in $,(¢,(X)) to its union Ua={x | 3XEa, xEX} in ,(X).
The forgetful functor from §,-Alg to Set has the left adjoint which sends a set X to (#,(X), U: g,(¢,(X)) = ,(X)).
The counit for g,-algebra (S, V) is V: ($,(5), U) — (S, V).

Definition 2.2. A complete join semilattice is a tuple (S, <, V) with a partially ordered set (S, <) and the join or the
least upper bound \/ 4 for a subset 4 of S.

We write CSLat for the category whose objects are complete join semilattices and whose arrows are homomor-
phisms between them. CSLat is equivalent to the Eilenberg-Moore category -Alg of the powerset monad #,
whose endofunctor sends a set X to the set of all subsets g (X)={ 4|4 C X}, whose unit sends an element x in X to
ix} in & (X), and whose multiplication sends a subset family « in (% (X)) to its union Ue={x | XEa, xEX] in

(X). The forgetful functor from §-Alg to Set has the left adjoint which sends a set X to (p(X), U: o (pp (X)) — g
(X)). The counit for g-algebra (S, V) is V: ((S), U) = (S, V).
Definition 2.3. Let P = (P, i, #") and P'=(P', i, #”) be monads on C. A monad map 1 from P to P'is a natural
transformation from P to P’ satisfying the following diagrams.

l !
Pt wp pp Pl pp T pp

Id P ; » P’

Lemma 2.4. Let P=(P, 1", ") and P'=(P", i, #”") be monads on C. If 1 is a monad map from P to P', then, the following G is a
functor from P"-Alg to P-Alg.
- For a P"-algebra (c, p"), G(c, p)=(c, p'°1.).
« For a P"-algebra homomorphism f: (cy, pt) — (cy, py), Gf=f.
Proof. G(c, p') is a P-algebra by the following equations.
p'eten=p e n=1d
plet o p=p ol o 1p o Pi=p'o Pp' o, 0 Pi=p'oi. o Pp'o P,
Gf'is a P-algebra homomorphism by the following equation.
S o pie w=pye Pf e u,=pye 19° Pf
L]
We write — 1 for the above functor G.
Example 2.5. Let P be the finite powerset monad #, Let P’ be the powerset monad . Let 1, be the inclusion from
go/(X) to (X). Then,  is a monad map from $#,to #. The functor — °1is the forgetful functor from CSLat to SLat.
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3 Left Adjoint by Absolute Coequalizers
The next theorem is a corollary of the Theorem 2(b) of Section 3.7 of the book [2].

Theorem 3.1. Let C, D, D' be categories and G, U, U’ be functors satisfying the following conditions.

+ G: D' — D is a functor.

« A functor U: D — C has a left adjoint F (call its unit n and its counit ).

- A functor U'; D' — C has a left adjoint F' (call its unit n' and its counit €').

+ U o G is natural isomorphic to U'.

- U is monadic.

- For an object d in D, the parallel pair

F'Ug,
F'UFUd—— F'Ud
a”d ’ r !
F'UFnyq =oF"Ug gy = Erua
F'UFUF'Ud ———  F'UF'Ud—— F'Ud

F’UFUd
has a coequalizer in D'.

Then, G has a left adjoint which sends an object d in D to the codomain of the above coequalizer.
Theorem 3.2 (Corollary of Beck's theorem [6]). If a functor U': D' — C is monadic, then U’ creates coequalizers of those
parallel pairs f,g in D' for which U'f; U'g has an absolute coequalizer in C.
Example 3.3. The forgetful functor U’ from CSLat to Set is monadic. Therefore, it creates coequalizers of those
parallel pairs f, g in CSLat for which U, U’g has an absolute coequalizer in Set.
Theorem 3.4. Let P=(P, i, #7) and P'=(P' i”, ") be monads on C. Let 1 be a monad map from P to P'. For a P-algebra (c,
p), lete, ,: P'c = E(c, p) be an absolute coequalizer of P'p and 1. > P, in C.

Pp €ep)
P'c

P'Pc E(cp)

P,

Then, the functor — e 1. P'-Alg — P-Alg has a left adjoint L, where L(c, p) is the P-algebra on E(c, p) created by the forgetful
Sfunctor from P'-Alg to C.
Proof. Let D=P-Alg and D'=P"-Alg in Theorem 3.1. Let U be the forgetful functor from P-Alg to C. Let U’ be the
forgetful functor from P-Alg to C. The composition of U and —°z is natural isomorphic to U’ For a P-algebra (c, p),
U’ sends the parallel pair in Theorem 3.1 to

U'F' Ug, ,=U'F' Up=U'F'p=Plp

and
Ue'rye, © UF'Ue_. yruep © UF'UFR 'y )

=Uerue p) © UF'Uepe 021 p0 © UF'UFR Y

=i ° P'( © 1) © PPy,

=i, ° P ° P'P' ° P’

=ﬂf’o P'lL"
These pairs have an absolute coequalizer e. ,. Since U'is monadic, — ° has the left adjoint L by Theorem 3.2
and Theorem 3.1. L]

Theorem 3.5. If the assumptions of Theorem 3.4 hold and for all P-algebra (cp), e, has a right inverse r, ),

T, )
E(e, p) ﬂb Pc
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then L(c, p) is the pair of E(c, p) and the following P'-structure map.
,,,
u

P'r, e
P’E(c,p) en) P'P'c P'c (er) E(c,p)

Proof. There exist a unique object (E(c, p), p) and a unique arrow f: (P'c, ut)—(E(c, p), p) in P-Alg satisfying
U'f=e.,, by Theorem 34. Since fis e, itself and it is a P-algebra homomorphism, the following diagram com-
mutes.

PE(c, p)

!
Pr(c‘,p)

PPe ——» PE(c, p)
Pe
(

e p)

P !

ut p

Pe ————» E

(e.p)
e or

L]
By Theorem 34, the forgetful functor — © : from CSLat to SLat has a left adjoint if Set has an absolute co-
equalizer of o (V): p($,(S)) — »(S) and U : ¢ (,(5)) — #(S) for a join semilattice (S, <, V).

4 |deal Completion as Absolute Coequalizer

This section shows that Set has an absolute coequalizer of £ (V) and U for a join semilattice (S, <, V).
Definition 4.1. Let S be a join semilattice. An ideal is a subset 4 of S such that

- A is closed under finite join operation V,

+ A is closed downward under <.

Since an ideal 4 is closed under finite join, 4 must contain the least element V@ =0. Thus, ideals are not empty.

The set of ideals of a join semilattice S is denoted by Z (S). For a subset 4 of a join semilattice S, we write (4)
for

[@ES | IXEP,(S). XTA, a <\/ Xl.

Lemma 4.2. For a subset A and an ideal I of a join semilattice S,{A)is an ideal of S and{A) C I iff ACI In other words, for a
subset A of a join semilattice S,{A) is the smallest ideal containing A.
Proof. For a finite subset ¥ ©(4) and y€E€Y, there exists a finite set X, satisfying X,C4 and y<VX, We have VYE
(4), since U{X, | yEY} is a finite subset of S satisfying ULX, |y € 1C4 and VY<V ULX, | yEY]. (4)is closed down-
ward under <, trivially. Therefore, {4)is an ideal.

For all @ € 4, {a} is a finite subset satisfying {a} 4 and a< Vla}. Therefore, (4) contains 4.

Let I be an ideal containing 4. For ¢€S and Xegof(S), if X€4 and a<VVX, then we have XCI, VX€&I and a€1l
Therefore, we have{4)C 1. U]

The function{_): #(S)— 7 (S) which sends 4 to {4) is called an ideal completion. The inclusion function : Z (S)
— »(S) is a right inverse of ().

Z(S) ——» p(S)

Id “

Z(S)
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Theorem 4.3. For a join semilattice S, {_): § (S) =T (S) is an absolute coequalizer of o (\/) and U in Set.

P (V) -
# (9, (S))T'SO (8)—=1 ()
Proof: Let a be an element of ($,(S)). We have (¢ (V) (o)) S{Ua) as follows.
(V) (0) S(Uw)
S p (V) (@) S(Uw (by Lemma 4.2)
oV e(Ua) (VXEa)
S XCT{(Ua) (VXEa) (since an ideal is closed under finite join)
SUal{(Ua)
S(Ua S(Ua) (by Lemma 4.2)
Conversely, we have (Ua) S{$ (V) (a)) as follows.
(Uay S{p (V) (a))
SUal{p (V) (@) (by Lemma 4.2)

SXC(p(V) (@) (VXEa)
SVXE(p (V) (a)) (VXEa) (since an ideal is closed downward)
S p (V) () S{p (V) (a))
(P (V) (@) S{p (V) (a) (by Lemma 4.2)

Therefore, for each a€p (9,(5)), (@ (V) (a))=(Ua).

We define o,: $(S) —> 0 ($,(S)) and down: 0 (S) = (0,(5)) as follows.

p,(4)=1XEp,(S) | XC 4]
down (4)=l{a,h} | aES, bEA, a<b}

These functions satisfy the following diagrams, where r is the inclusion function from Z (S) to #(S).

d
PO p(p,9) 9O plp,s)
U (V)

#(S) #(S)

| V)
p > p(p5) L5 o9 2% Hpo(9)

- U

Z(9) > o (S)

Let ZESet and f #(S)— Z be satisfying f° £ (V)=f° U. We show that there exists a unique arrow & T (S)—=Z
satisfying o {_)=f.

P (V) ()
go(gof(s))? p(S) —> I(5)

h
f H
v
Z
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The arrow 4 is defined by f° . We have & o {_)=fas follows:
heo(O=fere ()
=foUcdowne p(V) ° g,
=fep (V) cdown° p(V) ° g,
=fep(V) © g,
=foU o p,
=f
Moreover, if an arrow g 7 (S)— Z satisfies g ° {_)=f, then h=f o r=g° () ° r=g. So, h: T (S)— Z is a unique arrow
satisfying & ° {_)=f.
Therefore, { ): 9 (S)—Z (S) is a coequalizer of (V) and U in Set. The above diagrams are preserved by any
functor from Set to another category. Therefore,{_): £ (S)—Z (S) is an absolute coequalizer of # (V) and U in Set.
L]
Example 4.4. By Theorem 4.3, Theorem 3.4, and Theorem 3.5, the forgetful functor from CSLat to SLat has a left
adjoint, which sends a join semilattice S to (Z (S), C, V) satisfying Ve={Ua).

5 Left Adjoint between Categories of Algebras by Absolute Coequalizers
This section extends Theorem 34 to the theorem for quantales and idempotent semirings.
Definition 5.1. An idempotent semiring, abbreviated as I-semiring is a tuple (S, +, +, 0,1) with a set S, two binary op-
erations + and -, and 0,1ES satisfying the following properties:
- (S, +,0) is an idempotent commutative monoid.
- (S, -, 1) is a monoid.
+ For all a, b, c € §,
a+c+b-c=(a+h) + ¢
a*b+a-c=a- (b+tc)
0-a=0
a-0=0
where the natural order < is given by a<b iff a+b=b.
We often abbreviate a * b to ab.
The natural order < on an I-semiring is a join semilattice, where its join operation is given by V@#=0 and, for a
finite subset 4 C S containing @, V 4=a+(VA\|a}).
Example 5.2. Let ¥ be a finite set and X the set of finite words (strings) over ¥. Then, the finite power set 8
(") of ¥ forms an I-semiring together with the union, concatenation, empty set, and the singleton set of the
empty word.
IS denotes the category whose objects are I-semirings and whose arrows are homomorphisms between them.
Definition 5.3. A quantale S is an I-semiring satisfying the following properties: For each ASS and ¢ €S,
- the least upper bound \/ 4 of 4 exists in S,
- (V A)a=V {xa|xE4], and
ca(V 4) =V lax | xEA4|.
So, a quantale is a complete I-semiring or an S-algebra [3]. Homomorphisms between quantales are semiring
homomorphisms preserving arbitrary joins.
Example 5.4. Let ¥ be a finite set and X" the set of finite words (strings) over . Then, the power set £ (%) of
> * forms a quantale together with the union, concatenation, empty set, and the singleton set of the empty word.
Qt denotes the category whose objects are quantales and whose arrows are homomorphisms between them.
Remark 5.5. I-semirings need not be quantales. For example, an I-semiring ,(X ) is not a quantale since it is not

closed under arbitrary unions.
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Definition 5.6 (distributive law [7]). Let T=(T, u", #") and P =(P, i, #*) be monads on a category C. A distributive
law 0 of P over T is a natural transformation from 7P to PT satisfying the following diagrams.

TP THH TPT i» PTT TP 48>PT
1y Pu g .
Py
TP » PT P
0
0, PO 9
PP ———» PTP ——» PPT P ——» PT
P P
Tu uy Ty .
My
TP » PT T
g

Definition 5.7. Let T, T", P, P’ be monads on C. Let 6 be a distributive law of P over T. Let 6’ be a distributive law
of P' over T'. A morphism (1, m): @ — 0’ of distributive laws consists of monad maps z: T — T" and #: P — P’ satisfying
the following diagram.

0

TP ——» PT

T, -
TP PT
T'n Pt

TP e PT

Definition 5.8. Let P and T be monads on a category C. Let 0 be a distributive law of P over T. A Pe, T-algebra is a
tuple (c, ¢, p) such that

* ¢ is an object in C,

- The pair of ¢ and t: Tc — ¢ is a T-algebra,

+ The pair of ¢ and p: Pc — ¢ is a P-algebra, and

“poPtof,=toTp.

Pt

TPc $ Ple —» Pc

Ip p
Tc » C

t
P o, T-Alg denotes the category whose objects are P ° , T-algebras and whose arrows are simultaneous 7- and
P-homomorphisms.
Lemma 5.9. Let T, P, P' be monads on C. Let 6 be a distributive law of P over T. Let 0" be a distributive law of P' over T. Let 1 be

a monad map such that (1d, 1) is a morphism (Id, 1): @ — 0’ of distributive laws. The following G is a functor from P’ ° , T-Alg
to Po,T-Alg.

- For a P",. T-algebra (c, t,p"), G(c, t,p") = (c, t, p"1,).



BRGRERFRE 9% - #0760

+ For a P',. T-algebra homomorphism f, Gf = f.

We write —° 1 for the above functor G.
Example 5.10. Let 7=(_) * be the monad for finite sequences on Set. Then, T-Alg is equivalent to the category
Mon whose objects are monoids and whose arrows are homomorphisms between them.

Let §, be the finite powerset monad (§,, U, {_}) on Set. Let # be the powerset monad (@, U, {_}) on Set. There
exists a distributive law 6 of T over §, and there exists a distributive law 6’ of T over & as follows.

0 (S + Syreee8,) = 1x; * Xproooox, | Xy ES, %, ES,, . .., X, ES,}
0" (S; + Syreveee S) = 1x; * Xy X, | X ES, ES,, ..., x,ES,)

Then, §#;,°, T-Alg is equivalent to the category IS and #°, T-Alg is equivalent to the category Qt. Let 7, be the in-
clusion function from ,(X) to g (X). (Id, 1): @ — 6" is a morphism of distributive laws.
Lemma 5.11. The forgetful functor from Po, T-Alg to C is monadic.
Example 5.12. The forgetful functor from Mon to Set, the forgetful functor from IS to Set, and the forgetful func-
tor from Qt to Set are monadic.
Lemma 5.13. The forgetful functor from Pe, T-Alg to T-Alg is monadic. The left adjoint to this forgetful functor sends a T-alge-
bra (c, t) to (Pc, Pt~ 0, ") and a T-homomorphism f to Pf. The unit for a T-algebra (c, t) is n%: (c, t)—(Pc, Pt 6,). The
counit for a Po, T-algebra (c, t, p) is p: (Pc, Pt » 0, u5)—(c, t, p).
Example 5.14. The forgetful functor from IS to Mon and the forgetful functor from Qt to Mon are monadic.
Theorem 5.15. Let T=(T, ", n"), P=(P, u’, #*), and P'=(P', u”, #”") be monads on C. Let 0 be a distributive law of P over T.
Let 0" be a distributive law of P’ over T. Let 1 be a monad map such that (1d, 1) is a morphism (Id, 1): 0 — 0" of distributive laws.
ForaPe, T-algebra (c, t, p), let e, ,: P'c = E(c, p) be an absolute coequalizer of P'p and ", o P in C.

P’]) e(C,[))
P'c

P'Pc E(cp)

HooP',

Then, the functor — o 1. P, T-Alg — Pe, T-Alg has a left adjoint L, where L(c, t, p) is the P', T-algebra on E(c, p) created by
the forgetful functor from P', T-Alg to C.
Proof. Let D=Pe, T-Alg and D'=P', T-Alg in Theorem 3.1. Let U be the forgetful functor from P, T-Alg to T-Alg.
Let U’ be the forgetful functor from P'°, T-Alg to T-Alg. The composition of U and —° 1 is natural isomorphic to U".
For a P, T-algebra (c, ¢, p), the forgetful functor U’ sends the parallel pair in Theorem 3.1 to

UF'Ue,. ,,=UFUp=UFp=Pp

and
Ue'ruie 1 UF'Ue(—cprvie,p © UFUFR y, )

=Ue i1 p) CUF'Ue e preo e UF'UFN e, )

=i, °P'(uo1p.) °P'Py,

= P PPy oP,

=i °P1,
Moreover, the forgetful functor from 7-Alg to C sends these pairs to the same arrows. They have an absolute co-
equalizer. The monadic forgetful functor from P'e, T-Alg to C is monadic. Therefore, — 1 has the left adjoint L by
Theorem 3.1 and Theorem 3.2. L]
Theorem 5.16. If the assumptions of Theorem 5.15 hold and for all Po, T-algebra (c, t, p), e, , has a right inverse r ,,

r((?, )
E(e, p) — Pc

€ p)

El(e, p)
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then L(c, p) is the tuple of E(c, p) and the following P'>, T-structure map.

’ ’

. t e
. TP'c P'lc P'c p) E(c p)
U’

Tr,

TE (¢, p)

Pr e
P'E(c, p) er) P'P'c P'c fe.p) E(c, p)
Proof. There exist a unique object (E(c, p), ¢, p") and a unique arrow f: (P'c, P't8,, i) = (E(c, p), ¢, p") in P}, T-Alg
satisfying Uf= e, by Theorem 5.15. Since f'is e, itself and it is simultaneous a 7-homomorphism and a P"-ho-
momorphism, both of the following diagrams commute.

TE ¢, p)
Id ,
Tr(c‘p) PE(C, p)
TPe —— TE(c,p)  Pr, la
Te(c:p)
0! PPc ———» PE(c,p)
e(c,p)

PTC t, uf p’

Pt Pc T E((‘,p)
\/

P/C —_— E(va>
(e p)
L]
Example 5.17. By Theorem 5.15, Theorem 5.16, and Theorem 4.3, the forgetful functor from Qt to IS has a left ad-
joint, which sends an idempotent semiring (S, +, +, 0, 1) to (Z(S), C, V,+, 1,) satisfying
\/a:<U 0‘>' J K:<{a *blae] bEK}>, 1, :<%1}>
1

6 Direct Proof of Left Adjoint by Ideal Completion

In this section, we directly prove that the ideal completion gives the left adjoint to the forgetful functor from Qt
to IS.

Definition 6.1 (cf. Definition 4.1). Let S be an I-semiring. An ideal is a subset 4 of S such that 4 is an ideal of the
underlying join semilattice (S, <, V).

The set of ideals of an I-semiring S is denoted by Z (S). Note that Z(S) is closed under arbitrary intersection.
Also note that A€ Z(S) iff 4 is nonempty, closed under +, and closed downward under <.

We say that a subset 4 of an I-semiring S generates an ideal [ if I is the smallest ideal containing 4. By Lemma
42, {A)=1a€ES | X EP,(S). X4, a < VX| is the ideal generated by 4CS. Note that {_) is monotone and idempo-
tent, i. e. AC B implies (4) C(B) and ({4))={4) for any subsets 4, BCS. If 4 is a singleton la}, we often abbreviate

{al) to {a). Such an ideal is called principal.
Lemma 6.2. Let S be an I-semiring. For a subset a. of 0 (S), (Ua)={U [{4)| A€ a}).
Proof. The inclusion C follows from monotonicity of { ). Again, by monotonicity of { ), (4)C{UJ a) for each 4€a.
Thus, U {{4) | A€a}S{UJ a). So, we have (U {{4)| A€ a}) C{J &) by monotonicity and idempotency of { ). [
Let S be an I-semiring. For subsets 4, B € S, define
A®B=la+b | aEA, bEB)
AGOB=la - b | a€A, bEB
Al ={y| IxEA4. y<
Note that
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(APB)OC S (A40C) @ (BOC)
COABPB)C(COA)P(COB)
AO(BY)S(AOB) |
(41)OBS(40B) | .
Also note that for principal ideals,
(@)=la} | .
Though Lemma 3 in [4], corresponding property will appear as Lemma 6.5 in this paper, is shown by transfi-
nite induction, we are going to show Lemma 6.5 without using transfinite induction.
For subsets 4, B, X of an I-semiring S, define
YEATX S VaEA ax€EX
xEXB™' © VbEB. xbEX.
Note that BCA™'X iff AOBCX iff ACXB™". Then, since 4~'X C 4~'X and XB~'CXB™', we have 404~ 'XCX and
XB'OBCX. Also, if XCY, ACA', BCB', it holds that A 'X C 4™'Y and XB"'C YB™",
Lemma 6.3. The following holds for subsets X, Y, A and B of an I-semiring S.
1. A7 X®A'YCA T (XDY).
2. XBT'@YB'C (X®Y)B !,
3. Uuwlca(xl).
4. @B Hlcxl)B
Proof. 1 follows from A® (4 'X®A4'Y)C (404 'X) D (404 'Y) CXDY. The other inclusions are shown similarly
to 1. L]
Lemma 6.4. Let S be an I-semiring. The following holds for an ideal I and subsets A, B C S.
1. A 'Tis an ideal.
2. IB Visan ideal.
Proof. 1. Since A®0}={0}C1, {0} € A 'L Thus, 4 ' is nonempty. Also, we have
A T®A 1S4 U®I)  (by 1 of Lemma 6.3)

c4’r
A'nicat (dl) (by3of Lemma 6.3)
c4'L
Therefore 4~ is an ideal. 2 is proved similarly to 1. []

Lemma 6.5. Let S be an I-semiring. Then, (AOB)={{A) ©{B)) holds for any subsets A, BCS.
Proof. The inclusion € follows from monotonicity of {_). Next, we show the reverse inclusion. Since A©OBC{4OB),
we have 4 C{4©B)B™", By Lemma 64 and monotonicity of {_), it holds that {4) C{(4©®B)B~". Thus, {4) ©BC
(A®B) holds. Moreover, this inclusion implies BC (A) '{(4©®B). Again, by Lemma 6.4 and monotonicity of {_), (B)
C{4) " (4OB). Thus, (4) ©(B) T{4OB) holds. Therefore, by monotonicity of {_), the reverse inclusion holds. []

In general, the natural ordering on an I-semiring is a join semilattice but not complete as we have seen in Re-
mark 5.5. Next, we provide a completion of I-semirings.

Let S be an I-semiring and consider the poset (Z(S), €). Since €0)={0}, {0)is the least element of Z(S). For
each subset aC Z(S), an ideal {\U @) is the least upper bound of a. Obviously, the least upper bound of 0C Z (S) is

(0. Also, since {a)=la} |,

a<b & {a) C{(b)

holds for any a, hES. Thus, (Z(S), C) is an ideal completion of (S, <) with an embedding (_): S—Z(S). Va de-
notes the least upper bound of aC Z(S). For any I, J € 7(S), we write I+J for \/{I, J}, and define 7 - J={IOJ).

In the rest of this section, a functor from IS to Qt which is a left adjoint to the forgetful functor is provided. G:
Qt— 1S
Proposition 6.6. Let S be an I-semiring. For any H, I, J € T (S) and a C T(S), the following holds.
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1. {0) - I=(0)=I - 0).
2. () - I=1=1 - (1).
3. (H-D-J=H-U-J).
4. (Va) - I=\/J-I|JEaq.
5.0 (Va)=\V - J|JEdl.
Proof. 1 follows from definition of ©. 2 and 3 follow from definition of ® and Lemma 6.5. 4 follows from
(Va) - I=((Va)OD
=((Uaw)OD
=((Ua) ODn (by Lemma 6.5)
=(U VoI |JEq)
=(UJIJOI) | JEa}) (by Lemma 6.2)
=(Uv-1|JEa)
=\/ - I|JEdl.
5 is proved similarly to 4. []
Therefore, Z(S) forms a quantale.
Let S be an I-semiring. Using {x)=x}{, it is verified that the mapping
X )—><x>
from S to Z(S) is one-to-one and preserves +, -, 0, and 1. Thus, this mapping is an arrow from S to Z(S) in IS.
We have omitted a transfinitely inductive construction of an ideal, which has been adopted in [4]. Thus, it is im-
possible to benefit from the proof of Lemma 4 in [4], which depends on the transfinitely inductive construction.
Let S and S’ be I-semirings. Given a homomorphism f from S to S, we define
flAl=f(a) | a€A} and f ' [4T=la | f(a) €A}
for each 4 C S and A’ C §', respectively. Note that f[4] CA"iff 4 C £ '[47]. Also, note that
fIAOB] = fl4] Of[B]
flA®B] = f4]@® f[B]
flal] C 14l
for all 4, BCS.
Lemma 6.7. Let S and S' be I-semirings and - S — S' a homomorphism. Then the following holds for any A", B'CS'.
1. A0 ' B1C T A'OB].
2. faTe BIC f I A®B.
3.7MA L A
4. IfA'€1(S), thenf'[ATE€ T (S).
Proof. The first inclusion is equivalent to f[ £ '[41Of '[BT]1CA'©B". Also, it holds that
firtator  B= 1 a1 of L B 1.
Since fIf '[471C4" and f[f '[B1]CB’, 1 holds. 2 is proved similarly to 1. The third inclusion is equivalent to f
[f'[4711€ 4"} . Since fIf '[ATV]IC fLf ' [47T]) and f[f'[47]1CS4", 3 holds. It is sufficient for 4 to check non-
emptiness of £ '[4'] since the others are induced by 2 and 3. Suppose that 4’ is an ideal. Then, 0€A4". So, f[{0}1={0}
CA' Thus {0)Sf '[4']. Therefore, f '[47] is nonempty. ]
Lemma 6.8. Let S and S’ be I-semirings and - S — S' a homomorphism. For each subset A C S, the following holds.
SIS (flaD)
S D=(T4D)
Proof. The first inclusion follows from
SIS Al e 4 C o I{fT4])]
=)'/ 14])]  (by 4 of Lemma 6.7)
S IS f4]).
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The inclusion {f[{4)]) S{f[4]) follows from the first, and the reverse inclusion follows from the monotonicity of
fand (). O
Let S be an I-semiring, QO a quantale, and g S — G(Q) a homomorphism. By Lemma 6.8, g[/] and g[4] generate
the same ideal if 7 € Z(S) is generated by 4CS. For I € Z(S), the least upper bound of g[/] exists in O, which is
denoted by \/ gl1], since the least upper bound of any subset of O exists in Q.
Lemma 6.9. Let S be an I-semiring, Q a quantale, and g. S — G(Q) a homomorphism. If € Z(S), \/ gll1= \/ glA] for any
generating set A of I.
Proof. By Lemma 6.8, (g[1])={(g[{4)])={(g[A])for any generating set 4 of 1. Then, \/g[4] is an upper bound of
gl1] since (g[1])=(g[4]) SV gla])=(\Vgl4])l. By gl4]C gl1], \Vgl4]< \Vgli]. Thus, Vgl4]=\/gl] since
\/ gl1] is the least upper bound of g[/]. (]
Let S be an I-semiring and QO a quantale. Define the map g Z(S)— QO by
¢(D=Vegli]

for a homomorphism g S =G (Q).
Proposition 6.10. The map g preserves \/, *, 0 and 1.
Proof. For I, J € T(S),
gr-1)=\gli-J]

=VglIoh]

=VglIoJ] (by Lemma 6.9)

=V gli]1OglJ]

=(\Vgll) - (VgD

=¢(I) - g(J).
Also, we have ¢({1))= Vg[{1)]= Vg[{l{]=1 and g({0))= VVg[{0) 1= \Vg[{0}]1=0. Note that \V (U )=V {V B |
BEp | for a subset S of the powerset #(Q). Then, for nonempty subset aC Z (S),
g(Va)=\VglVal

=Vegl{Uax)]

=VglUa] (by Lemma 6.9)

=V (U il | 1€q)

=VIiVell] | I€q|

= Vgl | I€a).

The equation holds even in the case of o = 0 since \/a=(0) and it has been shown that ¢ preserves 0. U]
Theorem 6.11. Let S be an I-semiring and Q a quantale. For a homomorphism g: S — G(Q), ¢ is a unique completely join-
preserving homomorphism from T (S) to Q such that g=g > {_).

Proof. For each a€S, we have g¢({a))= \VVgl{a)]=\glla]]l=g(a) by Lemma 6.9. Assume that a completely join-
preserving homomorphism ffrom Z (S) to O satisfies g = f° {_). Then, it holds that
g(D=\gl1]
=Vig(a) | aEl}
=V /W) | a€l}(by assumption)
=f(V &) | aE1})
=f(I)
for each 1€ Z(S). Thus, §=f. L]
For an I-semiring S and a homomorphism #4: § — §', we define
F(S)=7(S) and F(h)=60\h,
respectively. Then, F is a functor from IS to Qt. It is immediate from Theorem 6.11 that the following holds.
Corollary 6.12. The functor F: 1S — Qt is a left adjoint to the forgetful functor G: Qt — |S.
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7 Conclusion and Future Work

We provided the sufficient condition for the functor from P’,T-Alg to Po,T-Alg to have a left adjoint. This result
includes the cases of the forgetful functor from CSLat to SLat and the forgetful functor from Qt to IS. For the sec-
ond case, a proof being independent from the sufficient condition was also provided.

In both cases, left adjoints are given by an ideal completion. The authors plan to search for other examples than
ideal completion provided.
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